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Abstract 

In this paper, we study a new functional, i.e., the exponential Yang-Mills functional ~'~t" e on the 
space of all smooth connections Vof a vector bundle E over a compact Riemannian manifold (M, g) 
which is defined by 

V) = ~ exp(½ IIR ~11 2)Ug, 

M 

where II R v 11 is the curvature tensor of a connection V. A critical point of Y/e~'e is called an exponential 
Yang-Mills connection. If IIR vii is constant, a smooth connection V is an exponential Yang-Mills 
connection if it is a Yang-Mills one. We show for any vector bundle E, that the functional y ~ ' ~  
admits a minimising connection V which is C~-HOlder continuous for all 0 < a < 1. We show the 
existence theorem of a smooth exponential Yang-Mills connection and study its properties and the 
second variation formula. 
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1. Introduction and statement of results 

The purpose of this paper is to set up a frame work on a new functional, i.e., the 
exponential Yang-Mills functional, in the calculus of variation on the space of 
connections of a vector bundle over a compact Riemannian manifold. 

Before beginning to state our results, let us recall recent results on harmonic 
maps and exponentially harmonic maps due to Eells and Lemaire [EL], Eells and 
Ferreira [EF] and Hong [H]. Eells and Lemaire [EL] considered exponentially 
harmonic maps instead of harmonic maps. Let (M, g) and (N, h) be two compact 
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Riemannian manifolds and q~ • M---> N a smooth map. Harmonic maps are extremals 
of the energy functional 

E(~o) = ( e(~o)vg, 

M 

where e(~o) = ½ [ d~o[ 2 is the energy density and vg is the canonical volume element. 
The map ~o is harmonic if and only if it satisfies the Euler-Lagrange equation 

r(~o) = div(d~o) = 0.  

The existence problem for harmonic maps is the following: given two Riemannian 
manifolds (M, g), (N, h) and a homotopy class ~ of smooth maps from M to N, 
when is there a harmonic map in ~-~? 

This problem has been studied extensively, and the answer depends on the 
manifolds and the homotopy class. To obtain existence of solutions in all dimen- 
sions, without conditions on the manifolds, Eells and Lemaire [EL] considered 
another problem of the calculus of variations. Namely, they defined the exponential 
energy of q~ as 

Ee(q~) = f exp(lld~PlZ)vg 
M 

and called a smooth extremal of E~ an exponentially harmonic map. They showed 
the following theorem and interesting properties of exponentially harmonic maps: 

Theorem 1.1. (Eells and Lemaire [EL] ). Let (M, g) and ( N, h) be two compact 
Riemannian manifolds, ~ a homotopy class of  smooth maps from M to N. Then X 
contains an Ee-minimising map, which is a-HOMer continuous for  all 0 < a < 1. 

Note that, if e (~)  is constant, a smooth map q~ is harmonic iff it is exponentially 
harmonic. For the existence of harmonic maps and exponentially harmonic maps, 
it is known that: 

Theorem 1.2. If  dim M >  3, then for  any homotopy class ~?~, 
(1) (Eells and Ferreira [EF]) there exist a C ~ Riemannian metric ~ on M 

conformal to g and a C ~ map ~o in ~,~ such that ~p : (M, ~,) ---> (N, h) is harmonic; 
(2) (Hong [H]) there exist a C ~ Riemannian metric g' on M conformal to g and 

a C °~ map ~b in ~ such that ~: (M, g') ~ (N, h) is exponentially harmonic. 

Now we start the set up of our exponential Yang-Mills connections. It is well 
known that both theories of Yang-Mills connections and harmonic maps have 
certain strong similarities. The existence problem for Yang-Mills connections is 
the following: given a compact Riemannian manifold (M, g) and a G-vector bundle 
E to a compact Lie group G over M, when is there a Yang-Mills connection on E? 
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This problem has also been studied and it turns out that the dimension of M plays 
an essential role. For harmonic maps of (M, g) into (N, h), dim M =  2 is critical. 
But for Yang-Mills connections, the critical dimension of M is four. In the case 
dim M = 4, special solutions are well known. Namely, a connection V of E is self- 
dual (resp. anti-self-dual) if its curvature tensor R v satisfies *RV=R v (resp. 
* R v= _ R v) where * is the Hodge star operator on exterior 2-forms on M. 
(Anti-)self-dual connections are known to exist and the moduli space of such 
connections on a 4-manifold M influences the topology ofM (cf. Donaldson [ D 1 ] ). 
In the case dim M = 2 or 3, the moduli space of Yang-Mills connections also plays 
important rolls (cf. Atiyah and B ott [AB], Floer [ F] ). For the higher dimensional 
case, if (M, g) is a compact Kahler manifold, a stable vector bundle over M admits 
a unique special Yang-Mills connection, called the Einstein-Hermitian connection, 
which is a natural extension of (anti-)self-dual connection (cf. Kobayashi [ K], 
Donaldson [D2], Uhlenbeck and Yau [UY] ). If (M, g) is a strongly pseudo- 
convex CR manifold, a special Yang-Mills connection is also known (cf. Urakawa 
[Url,  Ur2] ). All these theories depend on the base manifold (M, g) and a special 
property of the G-vector bundle E itself, and the existence problem is still unsettled 
in general. 

So in this paper, we introduce and study another problem of the calculus of 
variations in an analogous way as exponentially harmonic maps in the above [EL]. 
Namely, we define the exponential Yang-Mills functional y~gt'~ in Section 2 as 
follows. Let (M, g) be a compact Riemannian manifold, E a G-vector bundle over 
M. Let W(E) be the space of all C = G-connections of E. For V~ W(E),  let R v be 
its curvature tensor and define the exponential Yang-Millsfunctional by 

V) = f exp(½11RWll2)vg. 

M 

And a smooth extremal of y J t ' ~  is called an exponential Yang-Mills connection. 
Note that, if IIRVll is constant, then a smooth G-connection V is an exponential 
Yang-Mills connection if and only if it is a Yang-Mills one. One of our main 
results is as follows: 

Theorem 4.3. Let (M, g) be a compact Riemannian manifold and E a G-vector 
bundle over M to a compact Lie group G. Then ,~"¢¢ge admits a minimising con- 
nection V, which is a-Hiilder continuous for  all 0 < ot < 1, and the norm of  which 
IIRVll is almost constant. 

For the existence of Yang-Mills connections and exponential Yang-Mills con- 
nections, we obtain: 

Theorem 1.3. / fdim M > 5, then for  any G-vector bundle E to a compact Lie group 
G over a compact Riemannian manifold (M, g), 
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(1) (cf. Katagiri [KA ]) there exist a C ~ Riemannian metric ~ on the base manifold 
M conformal to g and a Coo G-connection V on E such that V is a Yang-MiUs 
connection with respect to ~ (cf. Thm. 5.1); 

(2) there exist a Coo Riemannian metric g' on M conformal to g and a C = G- 
connection V' on E such that V' is an exponential Yang-Mills connection with 
respect to g ' (cf. Thm. 5.3). 

In the case dim M = 4, we obtain: 

Theorem 5.6. I f  dim M = 4, there exist a C ~ G-connection V and a C O Riemannian 
metric g' on M conformal to g such that V is an exponential Yang-Mills connection 
in the weak sense (Section 5) with respect to g'. 

We also calculate the second variational formula of .~".bt" e and study the precise 
properties of exponential Yang-Mills connections. 

2. The first variation formula 

In this section, we prepare several notations and derive the first variation formula 
of exponential Yang-Mills connections. In this paper, we fix a compact Lie group 
G, a principal G-bundle P over a compact Riemannian manifold (M, g), and a G- 
vector bundle over M, E = P  ®p R r, associated to P by a faithful representation 
p: G ~  O(r).  That is, Gacts on P × Rrby PX Rr~  (u,y) ~ (ut, p(t) --~y) ~ P ×  ~r, 

t ~  G, whose quotient is denoted by u . y =  [ (u, y)] ~ P  ×p ~t r. Each element u of 
P over x E M defines a linear isomorphism of R r onto the fiber Ex, u: R r ~ Ex by 
y ~  u'y. Take a basis {ei } ~= 1 of R r. Any local C oo section s of P over an open set 
U of M induces a local frame { Sg } r= 1 of E over U, called a G-frame, by s,.:= s. e/. 

Given a vector bundle F over M, let I~P(F) = F( A p T *M®F)  denote the space 
of all smooth p-forms on M with values in F, p > 0. 

A smooth connection on E is a linear differential operator V: O°(E) ---> OI(E) 
such that 

V(for) = df® or + fVo-, 

for a l l f ~  C°°(M), o re /2°(E) .  For a G-frame {s/} r ,  of E on U, by means of 

Vsi = ~ tousj, 
j = l  

a r × r-matrix valued 1-formed toy = (tou), called the connection form of V with 
respect to {s~ } r= 1, is defined on U. Then there exists a unique r ×  r-matrix valued 
l-form to on P, called the connection form of V, such that s *to= toy. A connection 
Von E is called a G-connection if its connection form to takes its values in the Lie 
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algebra fi of G which is identified with a subalgebra of ill(r, R) via p. This means 
also that tot, takes its values in fi for any G-frame. Let W(E) be the set of all smooth 
G-connections Von E. 

The group of all automorphisms of E inducing the identity map of M is called 
the gauge group, denoted by ~ ' (E) .  The gauge group i f (E)  is identified with the 
space of smooth sections of the fiber bundle P × Ad G, which is the group of all 
automorphisms ~o of P satisfying ~o( ua ) = ~o( u )a, u ~ P, a ~ G. The identification 
is i f (E )  ~ q ~  ff where ~(u)  := ~oou, u ~ P  considered as a linear isomorphism of 
R r onto Ex. ~ ' (E)  acts on ~ ' (E)  by 

17~o : =  ~9 -- 1 o ~7o ~0, V ~  O. : =  ~ -- 1 ( V (  ~00 r) ) , 

for o-~ 12°(E), ~o~ (E) and V ~ ( E ) .  V ~ corresponds to the connection form 
if*to if to is the one of V. The Lie algebra of i f (E)  can be regarded as the space 
/2° (P × Ad g ) of smooth sections of the vector bundle P x Aa g, which is identified 
with a subbundle of the bundle End(E) via p, denoted by gE. The identification is 

P ×Ad ~q~ [(U, A)]  ~ u o p ( A )  ou - I E E n d ( E )  . 

Note that ~ ( E )  admits an affine structure, i.e., the difference of two connections 
A = V -  I7 is in Ol (ge )  and W(E) = { V+A; A ~ I21(~E) } for any fixed element 
V ~ ( E ) .  Equivalently, the difference of two connection forms or= to - to '  is in 
Ol (P  × Ad .q) and all connection forms are obtained by to + a with a ~/21 (P  × Ad .q) 
for a fixed connection form to. 

To each G-connection Vof E, the curvature tensor R v in 02(ge)  is defined by 

R V(x, Y) = [ vx ,  Vyl - v x,y , 

for vector fields X and Y on M. It corresponds to a ~-valued 2-form {2 on P, called 
the curvature form defined by ~0 := dto + to A to, to being the connection form of V. 
It holds that 

R W = ~ - l o R V o q ~ ,  

equivalently, .0 = ~ * ~ ,  ~0 being the curvature form of the connection form q3*to. 
Let ( , )  be an inner product on ~ defined by 

(a ,  B) = - ½t r (p(a )p(B))  = ½tr(tp(a) o p(B)  ), A, B ~ ~ ,  

which induces a fibre metric metric on P × Ad ~. Equivalently it induces a fibre 
metric on End(E) by 

(C, D)  = ½tr(tCoD), C, D ~ E n d ( E x ) , x ~ M .  

For a connection I7 on a vector bundle F over M, let dr:  OR(F) ~ 0 v+ ' (F) ,  
p > 0, denote the usual exterior differential operator defined by 

p + l  
dVto(X, .... Xp+l) := ~ ( - 1 )  '+1 17x,(to(X, . . . . .  X i  . . . . .  Xp+,))  

i ~ l  

+ E ( -1 ) '+J to ( [X~ 'X j l 'X '  . . . . .  X' . . . . .  "~' . . . . .  Xp+,), 
i<j  
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for to ~ 12P (F)  and vector fields XI . . . . .  Xp + x on M. If F admits a fiber metric ( , ) ,  
define an inner product on A p T*M®Fx by 

( ~'  q~) = E ( ~ (  eil . . . . .  eip), ¢P( ei I . . . . .  eip) ) , 
il <"'<ip 

where { ei } 7= 1 is an orthonormal basis of T~/wi th  respect to g. We denote its norm 
by I1 II. The global inner product ( , )  on 12P(F) is defined by 

(~, ~ ) =  f (~, ,p~v~ 
M 

for ffff, ¢p ~ 12P (F) .  Then we define the operator 8 v: 12p + ~ (F) ~ 12P (F) ,  p ~ 0, to 
be the formal adjoint of the operator d v. 

It holds by the above definitions that 

IIg~'~ll = IlgVll, or equivalently 113"OII--111211 

for ~ ( E ) .  
Now let us recall definition of the Yang-Mills functional. 

Definition 2.1. The Yang-Millsfunctional ~,/.~": ~ ( E )  ~ K is defined by 

if y ~ t ' ( V ) - -  2 ,  IIRVll2vg' (2.1) 
M 

or equivalently, ~ '~" :  {connection forms to} ~ R by 

1 f (2.1') ~ ' ~ ' ( t o ) - -  ~ 110~ll2v~ , 
M 

12 " being the curvature form of to. 

Now we define the exponential Yang-Mills functional. In the following, we 
consider only connections on the vector bundle E for simplicity. 

Definition 2.2. The exponential Yang-Millsfunctional,~l.K~: ~'(E) ~ R is defined 
by 

~¢g/e(V)  = f exp(½ IIR vii 2)v 8 . (2.2) 
Q ¢  

M 

A critical point V ~ ( E )  of the Yang-Mills functional ~,".K is called a Yang- 
Mills connection and a critical point of the exponential Yang-Mills functional 
~l~g" e is called an exponential Yang-Mills connection. 
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Note that by the above, both y¢~"  and fx'c~"e are invariant under the action of  
the gauge group i f ( E )  on ~ ( E ) .  

In the following, we calculate the first variation of  the functional y J t ' e .  For this, 
we fix V ~ ( E )  and consider a smooth family of  G-connections V', - e < t <  e, 
such that V ° = V. Write 

W= V+A t , 

where A t ~ ~ (gE) for [ t[ < E and A o = O. It holds that 

RV,=RV+dV t 1 A +~[AtAA'],  

where for two ~o, ~ E  f21(~E), 

[~pA~O](X, Y ) = [ ~ o ( X ) ,  ~ ( Y ) ] - [ q ~ ( Y ) ,  ~O(X)], X, Y~TxM. 

Since 

t=o d t=o 
d exp(½11RV, llZ)=exp(½11RVll2) & ½ IIR ~,112 

= exp( ½ II R vii 2) (d  VB, R v), 

d t=o y ~ C e ( ~ 7 t )  = fexp(½11RVll2)(dVB, RV)vg 
M 

= f (B, 6V(exp(½llRVll2)RV))v~, 
M 

where 

d t=o 
B:=  Vt~ O l ( g E )  . 

Thus we obtain: 

T h e o r e m  2.3. The first variation of the exponential Yang-Mills functional is given 
by the formula 

dt=,  y ~ ' ~ =  f (B, 6V(exp(½1lRVll2)RV))vg, 
M 

where 

d Vt" 
B =  d-t t=o  

Consequently, V is an exponential Yang-Mills connection if and only if 

(5 V(exp ( 1 IIR vii 2)R 17) = 0 .  (2.3) 
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In particular, i f  IlRVlJ is constant and V is a smooth connection, then V is an 
exponential Yang-Mills connection i f  and only i f  it is a Yang-Mills one. 

3. Jensen's inequality and its applications 

A function f :  ~P ~ ~ is called convex if for all x, y ~ R p, and 0 < h _< 1, 

f ( ( 1  - h ) x +  Ay) < (1 - h)f(x)  + Af(y) .  

Then Jensen's inequality is: 

Proposition 3.1. Let q~ be a convex function on •P, S a set with Ix(S) < oo, Ix a non- 
negative bounded measure on S and Sa 1 ( S, Ix) the space o f  all integral measurable 
functions on S with respect to Ix. Then for  any ~i E Sa l ( S, Ix), 1 < i <_p, 

I f  ~(~'  . . . . .  ~)_< - -  ~ ( ~ a ( X )  . . . . .  ~ p ( x ) )  d I x ,  
Ix(s) 

S 

where 

Ix(S) ~i(x) dIx.  
S 

The equality holds i f  and only i f  ~i is constant almost everywhere. 

Proof  See [Mo].  

To apply this proposition, we prepare the Sobolev space S ap (E) of SaP G- 
connections, where SaP means the Sobolev space of functions with first derivatives 
which arep-integrable: We fix I7 0 as a C = G-connection of E, i.e., V ° ~ ( E ) .  Let 
1 < p  < ~ and define the Sobolev space by 

SaP(E) := { V= V°+A; A E S a P ( T * M ® g e )  } ,  

where SaP ( T *M® ge) is the completion of O 1 (fie) with respect to the norm 

(f (I IIA II 1,p :---- II VA II Pvg + IIA II Pvg 

M M 

Define also the SaP space of G-connections of E by 

SaP(E) := { V= I7 0 +A; A E SaP(T*M®BE) }, 

where SaP (T *M® fiE) is the completion of l ] l (ge)  with respect to the norm 

(I IIAIIp:-- IIAIIPvs] • 
M 
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Moreover, for 0 < a < 1, define the a-HSlder space of G-connections of E by 

W~(E) := { V:= V°+A; AEW'~(T*M®gE) }, 

where W'~( T *M® ,qe) is the completion of 121 (fie) with respect to the norm 

IIT~I(A(X) ) - A ( Y )  II 
IIAII~: = inf inf inf 

x * y ~ M  tr X~TxM r(x, y)~' 
Y~ 7~vM 

Here r(x, y), x, y ~ M ,  is the Riemannian distance in (M, g) between x and y, o- 
runs through a smooth curve [0,1]--*M with t r ( 0 ) = x  and o-(1)=y,  and 
T~:End(Ex)-~End(Ey) is the parallel transport with respect to the connection 
induced from I7 0 along o'. We call an element in W~(E) ot-HSlder continuous G- 
connection of E. Then the Sobolev imbedding theorem says that the imbedding 
.~P (E) ' ~ W~(E) is a compact operator for any 0 < ~ < 1 - (dimM)/p.  Define 
finally our space 

7 f ( E ) : =  n - ~ ( E ) N { V ; y ~ ' e ( V ) < ~ } .  
p ~ l  

Then we obtain: 

Corol lary  3.2. For any V~ ggZ(E), it holds that 

exp - 1 ~'¢¢t'(V)) < 
Vol(M, g) g) 

1 
- Vol(M, ~/~,'~( V ) .  

The equality holds if and only if II g vii is constant almost everywhere. 

Proof. The connection Vsatisfies ,~L,h,'~ (I7) < ~, i.e., ½ II R Wll 2 belongs to the space 
_ ~  (M) of all integrable functions on M with respect to the canonical volume 
element vg. Since the exponential function is convex, we get Corollary 3.2 by means 
of Proposition 3.1. [] 

Using this corollary, we obtain: 

T h e o r e m  3.3. Assume that Visa minimizer in 7F ( E) of the Yang-Mills functional 
y~4t" and the norm of the curvature IIR vii is almost everywhere constant. Then V 
is also a minimizer of the exponential Yang-Mills functional ~x'~Ct'e and for any 
minimizer V' of the exponential Yang-Mills functional ~/.¢t'e in 7// ( E) , the norm 
II R v' II is almost everywhere constant. 

Proof. For any I7' in 7~(E) ,  it holds by definition that 
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1 1 
exp ~x'..~" ( I7' ) ) 

exp (Vol (~/, g)"~/'~g (V))  < (Vol(M, g) (3.1) 

1 
< 
- Vol(M, g)  

because of the monotonicity of the exponential function and Jensen's inequality in 
Proposition 3.1. Then we obtain 

exp(  1 ,~X'cg,'(V)) < inf 1 
Vol(M, g) v ' ~ e )  Vol(M, g) ~,/.A'e(I7') . 

On the other hand, since IIR vii is almost everywhere constant, we obtain: 

Vol(M, g) 
1 fexp(½llRVl l2)vg 

ycgt'e(V) = Vol(M, g) 
M 

=exp(½ IIR vii 2) 

=exp ol(?v/, g) ~ ' ~ ' ( V )  . 

Therefore V is also a minimizer of the exponential Yang-Mills functional. 
Now assume that I7' is any minimizer of the exponential Yang-Mills functional. 

Then the second inequality of (3.1) is in fact the equality. Due to Corollary 3.2, 
! II R v' II is constant almost everywhere. [] 2 

4. The existence o f  the minimizer  

By convexity of the function exp( lx2~ z, we shall show the exponential Yang- 
Mills functional is lower semi-continuous, and then by a direct method we shall 
show the existence of a minimizer of the exponential Yang-Mills functional. 

We first prepare some results on the variational principle for a general setting 
following [ G]. 

Let (M, g) be a compact Riemannian manifold. Let F ( x, y, z) : M × ~ N X R m -~ 
be a non-negative function satisfying the following three conditions: 

( 1 ) for all y ~ R ~v and z ~ R m, F(X, y, Z) is measurable in x ~ M, 
(2) for all z~  ~m and almost all x ~ M ,  F(x, y, z) is continuous in y ~  R n, 
(3) for all y ~ R  N and almost all x ~ M ,  F(x, y, z) is a convex function in z. 

For two measurable functions u : M ~  R ~v and p : M ~  R r~, consider the function 

p) -'= ( F(x, u(x), p(x)  )vg(x) , J(u, 

M 

where Vg is the canonical measure on (M, g). Then due to [G, Thm. 2.2] we get 
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Theorem 4.1. Let (M, g) be a compact Riemannian manifold and F(x, y, 
z) : M × RN × R m ~  R a non-negative function satisfying the conditions (1)-(3). 
Assume that { ui } i~ 1 ({Pi } i~ 1) be sequences o f  functions o f  M into R iv (of M into 
~m) satisfying that { ui}i~ l converges to u in Sa1( M, g~¢) and {Pi } i~l weakly 
converges top  in Sa l ( M, Rm). Then it holds that 

J(u, p) < lim inf J(ui, Pi) • 
i ---~ o o  

Due to Thm. 4.1, we have immediately 

Corol lary 4.2. Let { Vi } i~1 be a sequence o f  connections in SaP(E) which con- 
verges weakly to a connection V in SaP(E). Then it holds that 

y ~ , ' ~ ( V )  < lim inf ~/¢g"e( Vi). 
i ..-.~ o¢ 

Theorem 4.3. The exponential Yang-Mills functional admits a minimising con- 
nection V which is C~-H61der continuous for  all 0 < a < 1. 

Proof Let { V~ = I7 ° +Ag }~% 1 be a minimising sequence of the exponential Yang-  
Mills functional ycg"~ in 7~r(E). Since by definition, 

Y~"~( ~ : = ~ (½11g vII 2)kv~' 

M 

{ V i}~=, is bounded in .~p  (E) and { I IR ~11 }/~1 is bounded in SaP(E) for all 
1 < p < ~. For each 0 < a < I choosep with 0 < a < 1 - (dim M ) / p  to use a compact 
imbedding _~p(E) ~ ~ ~ '~(E).  Using the compactness of the Sobolev imbedding 
and a diagonal argument, there exist a subsequence of { Vi } i%1, denoted by the 
same symbol, and a connection V such that { I7/} ~ 1 converges weakly to V in 
2 ~  (E),  and converges strongly to V in SaP(E) and ~ ( E ) .  Then applying Cor- 
ollary 4.2 for { V,. }i% l, we get 

YJ~'e(V) < lim inf ~/JR'~( V,.). 

Therefore V attains a minimum of ~,/t"~ and belongs to y~ , '~  and belongs to 
~ ( E ) .  [] 

5. Existence of exponential Yang-Miils connections 

In this section, we show existence of Yang-Mills connections and exponential 
Yang-Mills connections. For the existence of Yang-Mills connections, we have: 
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Theorem 5.1 (Katagiri [KA] ). Let (M, g) be an n-dimensional Riemannian 
manifold, G a compact Lie group and E a G-vector bundle over M. Assume that 
n >_ 5. Then there exist a C ~ Riemannian metric g on M conformal to g and a C °o 
G-connection V on E such that V is a Yang-Mills connection with respect to g. 

Remark .  In the case n = 4, the Yang-Mills functional y,¢/" is invariant under the 
change g to ~ =fg with a positive C °O funct ionfof  M. In the case n = 2 or 3, Yang- 
Mills connections exist for any G-vector bundle E over any Riemannian manifold 
(M, g) of dimension n (cf. [R] ). 

Proof For completeness, we give here a brief proof. For a positive C °O funct ionf  
on M, put a new Riemannian metric g on M by g =fg. We write the subscripts g 
and g for their corresponding quantities. Then we get 

IIR vii gvg= f (.-4)/211R vii 2 gVg . 

M M 

For the Euler-Lagrange equation, 

~;R 17=0 ~ ~glTQf ( n - 4 ) / 2 R  17) ~ - 0 ,  

where $v, 6v  are the formal adjoints of d v corresponding to g and g, respectively. 
Moreover, the functional 

:~  g) U g Fp(V) 2 ( l+ l lRVl l  2p/2 

M 

satisfies the Palais-Smale condition and attains a minimum if 2p > dim M (cf. [ Uh, 
P] ). Its Euler-Lagrange equation is given by 

6v((1 + ilR vii 2 (p-2)/2 g) R V ) = 0 .  (5.1) 

In fact, forA ~ O l ( g e ) ,  

d F p ( V + t A ) =  ~ (l+[iRV+ta[lZ p/2 g ) Vg 
"dt t z o  t~o  

M 

= P-2 f ( 1 + IIR vii 2)(p-2)/2(dr'A, R V)gvg. 

M 

Thus eq. (5.1) has a solution V for 2p > dim M. For the solution I7, defining 

f : =  (1 + IIR vii 2"~(p-E)/(n--4) g/ 

and g =fg, we obtain 6VR v= 0 so g and V are the desired ones. [] 

Now our theorem is as follows: 
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Theorem 5.2. Let ( M, g) be an n-dimensional compact Riemannian manifold, G 
a compact Lie group, and E a G-vector bundle over M. Assume that n > 5. Then 
there exist a C ~ Riemannian metric g on M which is conformal to g and a C= G- 
connection V on E such that V is an exponential Yang-Mills connection with respect 
tOg. 

Thm. 5.2 follows immediately from Thm. 5.1 and the following theorem: 

Theorem 5.3. Under the same situation of Thm. 5.2, assume that n > 5 and let V 
be a Yang-Mills connection. Then there exists a C ~ Riemannian metric on M which 
is conformal to g, such that V is an exponential Yang-Mills connection with respect 
tog. 

To prove this theorem, we need the following two lemmas. 

Lemma 5.4. The function f ~ logf/  f 2 is a strictly increasing function on the interval 
[1, v~e). Thus the inverse function f =  ~ ( y )  exists on the interval [0, 1/2e) and 
smooth. 

Proof In fact, the derivative is 

dy 1 - 2  l o g f  

df  f s  , 

which is positive on the interval [ 1, Vre). [] 

L e m m a  5.5. Under the same situation of Thm. 5.2, assume that n > 5 and V is a 
Yang-Mills connection. Then for any e>  0, there exists a C ~ Riemannian metric g 
on M which is homothetic to g such that V i sa  Yang-Mills connection with respect 
to g and IIR vii ¢ 

Proof For a positive constant C, put g = C g. Then the Yang-Mills equation for g 
is the same as for g. Moreover, since IIR vii2- = C-211R vii2 and M is compact, we 

2 < e if C is sufficiently large. [] get IIR vii g 

Proof of  Theorem 5.3. By Lemma 5.5, we may assume a Yang-Mills connection 
V satisfies IIRVll2<~< ( n - 4 ) / 2 e .  For a positive C = function f on M, define 
g = f  - lg. Then 

6VR v = 0  ¢ .  ~ ( f ( n - - 4 ) / 2  R 17) = 0 .  

2 < ( n - - 4 ) / 2 e ,  we can define the function f on M by Since IIR Vllg 

f ' =  q~( liB vii g 2 / ( n - 4 ) )  > 0 ,  

due to Lemma 5.4. Then it holds that 
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f ( n - - 4 ) / 2  = (exp(f2 IIR vii 2 / ( n -  4) )) ( n - - 4 ) / 2  

= exp( f  2 II R vii 2/2) = exp( IIg vii 2/2) . 

Then it holds that 

8Vfexp(½ lIR vii })R v) = 0 ,  

which implies that V is an exponential Yang-Mills 
to g. 

connection with respect 
[] 

For the case n = dim M = 4, we obtain the following: 

Theorem 5.6. Let ( M, g) be a 4-dimensional compact Riemannian manifold. Let 
G be a compact Lie group and E be a G-vector bundle over M. Then there exist a 
C O (continuous) Riemannian metric on M which is conformal to g, and a C ~ G- 
connection V such that V is an exponential Yang-Mills connection in the weak 
sense. 

Remark. Here an exponential Yang-Mills connection V in the weak sense means 
that a C O Riemannian metric g and C ~ G-connection Vsatisfy that 

f (dVA, exp(½ ~-)R V)¢vg=O, IIR V H 

M 

for aliA ~ O l ( g e ) .  

Proof We first note the conformal changes of the exponential Yang-Mills func- 
tional and the equation of the exponential Yang-Mills connections. For any n- 
dimensional Riemannian manifold (M, g) and any positive C ~ function f on M, 
put g '= fg .  Then the corresponding exponential Yang-Mills functional is 

y ~ o , ¢  :-- f exp(½11RVll 2¢) re-- f fn/2 exp(½f-211RVll g)vg2 . 
M M 

The Euler-Lagrange equation is given as follows: for any A ~ O(fie),  

d 0 ~/Jt'e.¢( V+ tA) = ff(n-4)/Zexp(½f-21lRVll~)(dVA. RV),vg. 
M 

Therefore we get 

8g(exp(½11RVll2-)R v) = 0  ¢~ ~ff(f(~-4)/2 exp(½f-211RVll2g)RV) =0.  

In the case dim M = 4, the corresponding Euler-Lagrange equation to ~ is 

6V(exp( 1 -2 ~ f  IIR Vll2)R v) = 0 .  
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Remember that a C ~ solution of Eq. (5.1), 

BY( ( 1 + IIR vii 2)~p-2)/2 R v) = O, 

exists for p > 2 in the case of dim M =  4. For the solution V, we can define a C O 
function f on M by 

IIR Vlls IIR vii e 0  
log((1 + IIR vii ~ )p-2) ,  

f= 

- 2 '  IIR vii = 0 ,  

and put g :=fg. Then it holds that for any A ~ 121 (ge),  

f (d VA, exp( 111R vii 2)R v)gve=O. 
M 

We obtain Thm. 5.6. [] 

6. The second variation formula 

In this section, we calculate the second variation of the exponential Yang-Mills 
functional. The calculation is similar as in Bourguignon and Lawson [BL]. 

We retain the above situation: Let (M, g) be an n dimensional compact Rieman- 
nian manifold, G a compact Lie group and E a G-vector bundle over M. We suppose 
that V t, I tl < E, is a smooth family of G-connections on E where V= V ° is an 
exponential Yang-Mills connection. We write 

V'= V+A', 

whereA' ~ 12~ (fiE) for all t, andA o = 0. The infinitesimal variation of the connection 
associated to V' at t = 0 is 

dA_~ ,=o B : =  E 121(gE)  . 

Define an endomorphism ~R v of O 1 (ge) following [BL] by 

~ v( q~) (X) := ~ [RV(ej, X), q~(ej)], 
j ~ l  

for ~ 121 (fie), where {ej }~'_ 1 is a local orthonormal frame field of (M, g).  Then 
we obtain: 
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Theorem 6.1. Let (M, g) be an n dimensional compact Riemannian manifold, G 
a compact Lie group and E a G-vector bundle over M. Let V be an exponential 
Yang-Mills connection on E. Then the second variation of  the exponential Yang- 
Mills functional is given by 

y./t 'e(V') = exP(½llRell2){(dVB, RV) 2 
M 
+ (d VB, d VB) + (B, !R V(B))}vg 

f ( S  a V(B), B)vg,  
M 

for B := ( d/ dt ) [ t=o Vt E 121 (fiE), where S : v  is a differential operator acting on 
121 ( ~E) defined by 

S z V(S) := 8 V(exp( ½ IIR vii z) (d VB, R V)R v) 

+ 8 V(exp( ½ II R vii 2)d VB) + exp( ½ II R vii 2)9~ V(B). 

Proof. In fact, we immediately obtain: 

1 d~2 t=o 2 I I R V ' l l 2 = ( d V n ' d V n ) + ( d V f + [ n A n ] ' R V ) '  

where C:= (d2/dt 2) I,-0 Vt. Thus we obtain 

dr2 t-o = ~ ,=0 f 
d 2 d ½exp(½11R~ll 2) & IIR ~ll2vg d 

M 

~--- - - f  ( ( ~  t=0 )2 d2 t=0 ) 1 exp(½llRVllZ ) d IlRV'll 2 +2~-~ IIR'I] 2 v 8 
4 M 

= f exp( ½ II R vii 2) { (d Vn, g v)z 
M 

+ (dvC+ [BAB], R v) + (dVB, dVB)lvg. 

Furthermore, since V is an exponential Yang-Mills connection, 

exp(½ fIR vii 2) (deC, R v)vg = f (C, 8 V(exp(½ fIR vii 2)R v) >Vg =0. 
st 

M M 

And we know (cf. (6.7) in [BL] ) 

([BAB],  R v)= (B, ~ V(B)). 
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Thus we obtain the desired formula. [] 

The index, nullity and stability of an exponential Yang-Mills connection V can 
be defined in the same way as in the case of  Yang-Mills connections due to Thm. 
6.1. But it is rather difficult to analyse them because the form of S ° v is much more 
complicated compared with the case of Yang-Mills connections. 

Here we only note the case that II R vii is constant. We immediately obtain: 

Corollary 6.2. Let V be an exponential Yang-Mills connection of  which H R Vll is 
constant. Then the stability as a Yang-Mills connection implies the stability as an 
exponential Yang-Mills connection. 
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